Title: A panEuropean framework for strengthening Critical Infrastructure resilience to climate change

 

Grant agreement no: 653824

 

Duration: 1 June 2015 - 30 September 2018

 

Links:  CORDIS  Website LinkedIn Twitter  Facebook

 

Research area:

It is presently acknowledged and scientifically proven than climate related hazards have the potential to substantially affect the lifespan and effectiveness or even destroy of European Critical Infrastructures (CI), particularly the energy, transportation sectors, buildings, marine and water management infrastructure with devastating impacts in EU appraising the social and economic losses. The main strategic objective of EU-CIRCLE is to move towards infrastructure network(s) that is resilient to today’s natural hazards and prepared for the future changing climate. Furthermore, modern infrastructures are inherently interconnected and interdependent systems ; thus extreme events are liable to lead to ‘cascade failures’.

EU-CIRCLE’s scope is to derive an innovative framework for supporting the interconnected European Infrastructure’s resilience to climate pressures, supported by an end-to-end modelling environment where new analyses can be added anywhere along the analysis workflow and multiple scientific disciplines can work together to understand interdependencies, validate results, and present findings in a unified manner providing an efficient “Best of Breeds” solution of integrating into a holistic resilience model existing modelling tools and data in a standardised fashion. It, will be open & accessible to all interested parties in the infrastructure resilience business and having a confirmed interest in creating customized and innovative solutions. It will be complemented with a webbased portal.The design principles, offering transparency and greater flexibility, will allow potential users to introduce fully tailored solutions and infrastructure data, by defining and implementing customised impact assessment models, and use climate / weather data on demand.

 


 

 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 653824

 

 

 

European Commission

 

 

 

 

Horizon